
1

Maximilian Murach-Ward

Product Data Management and Sharing in the age of Internet of Things

MSci Hons Computer Science

(With Industrial Experience)

09/06/2017

2

Name: Maximilian Murach-Ward

Student ID: 33309337

Dissertation Title: Product Data Management and Sharing in the age of Internet of Things

Module: SCC 421

Date: 9 June 2017

I certify that the material contained in this dissertation is my own work and does not contain
unreferenced or unacknowledged material. I also warrant that the above statement applies
to the implementation of the project and all associated documentation. Regarding the
electronically submitted version of this submitted work, I consent to this being stored
electronically and copied for assessment purposes, including the Department’s use of
plagiarism detection systems in order to check the integrity of assessed work. My working
documents including my consent form, focus group recordings and more are available at:

http://www.lancaster.ac.uk/ug/murachwa/

I agree to my dissertation being placed in the public domain, with my name explicitly included
as the author of the work.

Date:

Signed:

http://www.lancaster.ac.uk/ug/murachwa/

3

Abstract

Internet of Things (IoT) has recently “taken off” and has become a popular research topic due to

advances in technology, which have enabled the development of small, cheap, and powerful internet-

connected devices. However, a research area that has not been explored in depth is how IoT might be

used in the field of Product Data Management (PDM). Using a system composed of sensors and

Raspberry Pi boards along with ShareAspace (PDM sharing software), this project explores whether

principles of IoT might be applied to product data management and sharing, and, if so, how they might

be applied. The system described here was deployed in a company’s office to mirror a real-world

scenario. In this scenario, the Raspberry Pi boards fed live temperature data from sensors (placed in

two different rooms) into ShareAspace. Several technical tests as well as two focus groups were used

to evaluate the system built. Technical test results were hugely successful and focus group results

suggested that IoT has the potential to play a part in the future of product data management. Overall

this project was successful in achieving the aims set.

4

Contents
1 Introduction .. 6

2 Background ... 8

2.1 Company background ... 8

2.2 Placement system ... 8

2.2.1 Description .. 8

2.2.2 Hardware... 9

2.2.3 Software .. 10

2.2.4 System limitations ... 10

2.3 Literature review ... 10

3 Design .. 13

3.1 The real world-system design ... 13

3.2 Deployment plan ... 14

3.3 Data models .. 14

3.4 Alternative design ... 17

3.5 System requirements .. 17

4 Implementation .. 18

4.1 Setting up the Light Blue Bean .. 18

4.2 Setting up the Raspberry Pi... 19

4.3 Setting up ShareAspace ... 20

4.4 The ShareAspace library ... 22

4.4.1 Authenticator node ... 22

4.4.2 Create node ... 23

4.4.3 Read node ... 24

4.4.4 Update node ... 24

4.5 Setting up Azure and powerBI .. 25

4.6 The Node-RED flows ... 27

4.6.1 ShareAspace sensorpropertybased flows ... 27

4.6.2 ShareAspace sensorinstancebased flow ... 28

5 The system in operation ... 29

5.1 Authenication operation ... 29

5.2 sensorpropertybased and Azure operations .. 30

5.3 Sensorinstancebased operations .. 36

6 Testing & Evaluation ... 40

6.1 Technical tests ... 40

6.2 Technical test results .. 41

5

6.3 Student focus group .. 42

6.4 Eurostep focus group .. 43

6.5 Webinar ... 44

6.6 Findings ... 44

7 Conclusions ... 46

7.1 Review of aims .. 46

7.2 Suggested revisions to design or implementation.. 46

7.3 Future work ... 47

7.4 Lessons learned ... 47

References .. 48

Acknowledgments ... 50

6

1 Introduction
IoT is simply having lots of devices connected to the internet and having them speak to each other or

to different applications. Examples of IoT range from devices like the Nest thermostat (NEST, n.d.)

which is a thermostat that can be controlled using a smart-phone app, all the way to smart cities,

which have sensors collecting data such as when bins need emptying (Butcher, 2014).

IoT has started to “take off” a lot more in recent years as computing equipment has become ever

smaller and less expensive to manufacture. This means it is very cheap and simple to deploy a variety

of devices collecting a diverse range of data.

During a recent placement, I worked for a company called “Eurostep”. Eurostep work in the area of

the exchange of product data and this spurred my interest in how IoT could be applied to enhance

automation and improve customer experience.

So, the main aim of this project was to research the development of an IoT application in the context

of product data exchange and sharing across different companies. My research question was:

Why and how is IoT and real-time data useful in the context of product data sharing and exchange?

My colleagues and I decided that deploying a real-world example of a system that collected real-time

data which was then forwarded to a product sharing application would be a good way of exploring

and answering this research question. We also felt that holding focus groups to discuss such a system

would help to evaluate its utility and functionality.

As has been noted, Eurostep specialize in the storing and exchange of product data across extended

enterprises and have created a piece of software to facilitate such activities. This software is called

“ShareAspace”. Eurostep expect that, in the near future, their customers will increasingly wish to store

and share real-time data using ShareAspace and they asked me to create a “proof of concept” system

in order to investigate how well ShareAspace coped with streams of real-time data.

One reason I found building the "proof of concept" system particularly interesting was that I realized

that systems based on the principles I was working to could have real-world uses for many of

Eurostep’s customers. Eurostep’s customers include defence and manufacture companies who share

data - internally and with suppliers and customers – relating to vehicles, equipment, and premises. I

thought it would be beneficial to build on my “proof of concept” system and create a real-world

application that would further demonstrate how the collection, analysis and sharing of real-time data

might be useful to Eurostep’s existing customers and similar companies.

The aims of the project included:

a) Finding out about related systems.

b) Building a real-life system.

c) Investigating how such a system could be applied to companies.

d) Then, exploring how such a system could help those companies.

In the Background chapter I shall provide more details about Eurostep as a company and the system I

built while working there, and I shall cover literature relating to this project. This chapter will aim to

address aim (a).

In the Design chapter I shall describe the designs for the system I developed and why I chose the design

I did. This chapter will also contain diagrams of the different designs.

7

In the Implementation chapter I shall go into detail on the system and describe the code that enabled

the system to work and how that system was deployed. There will also be pictures illustrating the

deployed system. In this chapter I will aim to address aim (b).

In the System in Operation chapter I shall show what the system is like to use by walking through the

main features and using screen-dumps and diagrams to illustrate the different steps. In this chapter I

shall also include a process description - a lower level description of what is going on at each step.

In the Testing and Evaluation chapter I shall describe the testing methodology used. The results of the

technical tests will be presented and summarized along with a summary of the results from the focus

groups held. I shall reflect upon the results in an effort to provide an insight into the research question.

In this chapter I shall aim to address aim (c) and (d).

Finally, in the Conclusion chapter I shall summarize the answer to the research question and assess

whether the aims of the project have been met. I shall talk about any revisions to the design or

implementation of the system along with any future work and any lessons I learned by doing this

project. In this chapter I shall also aim to address aim (d).

8

2 Background

2.1 Company background
As has already been noted in chapter 1, during my

placement in the Lent term, I worked at Eurostep and I

continued to work with them throughout this project.

Eurostep is a data modelling consultancy firm but have,

in recent years, moved into the development (and

supply) of a software application called “ShareAspace”.

As was related in my project proposal, ShareAspace facilitates the (internet based) storage and sharing

of product data across different companies. It is designed to complement PDM (Product Data

management), PLM (Product Lifecycle Management), and ERP (Enterprise Resource Planning) systems

by allowing companies with such systems to exchange and allow access to their data in a controlled

fashion with their suppliers, clients, and collaborators. ShareAspace is based on the ISO 10303 set of

international standards (also known as “Standard for the Exchange of Product data” or “STEP”) the

exchange and sharing of product data – particularly AP242 (“Managed model based 3D engineering")

(STEP AP 242, n.d.) and AP239 (“Product Life Cycle Support” or “PLCS”) (PLCS, n.d.). Because

ShareAspace is based on standards, its users can continue to use their existing product-data/resource-

planning systems or migrate to different systems and are not locked into relationships with particular

software suppliers. Users of ShareAspace can also share data with others who may use entirely

different system. (Murach-Ward, 2017).

At the start of my project placement I planned to present the system I produced to some of Eurostep’s

customers and find out whether they thought such a system could be useful. I did however envisage

that this might not be possible because Eurostep could opt for the presentation of a fully operational

large-scale system to their customers as opposed to a small-scale testbed. After discussing this with

Eurostep it became clear that they were not comfortable with the idea of presenting my system to

customers as it was still in its very early stages and needed to be developed further before they wanted

to consider such a move. However, I feel that I still received all the feedback necessary at this stage

from the focus groups discussed in chapter 6.

2.2 Placement system

2.2.1 Description
Currently, ShareAspace is designed so that it mainly

works with “static” data, although the “static” data is

data that may often be revised. Eurostep wanted me

to develop a system which would allow them to test

how well ShareAspace would cope with live “non-

static” data that changes in real-time.

The system I built to do this consisted of an assembly

of sensors which collected sensor data, (primarily

temperature data). This data was transmitted over

Bluetooth to a set of Raspberry Pi boards (Raspberry

Pi, n.d.) . The Raspberry Pi boards were all running a

piece of software called Node-RED (nodered, n.d.).

Node-RED is an IoT graphical programming language

based on Node-JS (Node.js, n.d.). To enable the

Figure 1 - Eurostep Logo (source - eurostep.com)

Figure 2 - Placement System Diagram

9

Raspberry Pi boards to use ShareAspace’s REST (representational state transfer) API (application

program interface) I wrote a ShareAspace library for Node-RED. This library allowed the Pi boards to

authenticate easily with the ShareAspace server along with sending data to ShareAspace and

retrieving and editing data on ShareAspace.

This system allowed us to perform lots of different kinds of tests on ShareAspace so we could assess

how well ShareAspace copes with live data and test which configurations of ShareAspace worked best

for live data.

2.2.2 Hardware
For the system, two pieces of hardware were essential: a sensor which

could collect different kinds of sensor data, and a computer, which

would forward sensor data to ShareAspace. Both pieces of hardware

would ideally be cheap and very small, as this would allow the system

to be more flexible in terms of the type of environments in which it

could be deployed. as I this would mean that the system would be

more scalable.

The sensors used for the system were “Light Blue Beans”. A Light Blue

Bean sensor is a matchbox sized PCB with a temperature sensor and

Accelerometer built in on it, with the option to add more sensors to

the PCB. The Light Blue Bean also has built-in low energy Bluetooth which meant the Light Blue Beans

did not need to be placed close to the Raspberry Pi boards as they do not need to be physically

connected to the Pi boards. This allowed for a lot of freedom in deciding where to place the sensors.

The Light Blue Bean also works at temperatures from -40°C to 85°C. All these features meant that the

Light Blue Bean was well suited to our requirements.

Raspberry Pi 3 boards were used first to collect sensor data

from the Light Blue Beans. The Raspberry Pi 3 has also got

built-in low-energy Bluetooth so a separate Bluetooth dongle

was not needed. Having the sensors and Raspberry Pi boards

communicate over Bluetooth also meant that multiple sensors

could be connected to a single Raspberry Pi.

The Raspberry Pi 3 is also quite a powerful small computer in

its own right, with 1GB of RAM and a quad core processor.

These specifications ensured that the Pi did not cause a

bottleneck in the system. Each of the Pi boards in the system

used Linux as the operating system. The distro of Linux for the Pi includes a piece of software called

Node-RED which I shall cover in detail in the software section of this chapter. Node-RED is responsible

for making the connection to the sensor over Bluetooth, collecting the sensor data and then sending

the sensor data over a network to a server running ShareAspace. The Raspberry Pi 3 also has built in

WIFI and an Ethernet port. This means that connecting the Pi to a network is simple and again does

not require a dongle. Again, these features meant the Raspberry Pi 3 was ideal for the system.

Both these pieces of hardware are fairly cheap with the Light Blue Bean (sourced from the USA) costing

around $34 and the Pi 3 costing £32 at the time the system was built. Both the Pi and Bean are very

small and, as has been noted, can be placed apart (as long as they are within Bluetooth range) allowing

for much more flexibility when deploying the system.

Figure 3 - The Light Blue Bean
(source - makezine.com)

Figure 4 - The Raspberry Pi 3 (source -
raspberrypi.org)

10

2.2.3 Software
A program was required to run on the Pi boards which would collect the data over Bluetooth from the

Light Blue Beans but then also authenticate with the ShareAspace server and then communicate with

the ShareAspace API. This is where Node-RED came in.

Node-Red is an IoT graphical programming tool. It works by connecting “nodes” (blocks) together to

form a “flow” (basically a program). It is based on Node-JS and comes with a large library of nodes.

You can, however, also write your own nodes.

Node-RED already has a Light Blue Bean library and this meant that it was fairly simple to connect to

a Light Blue Bean from a Pi and read temperature data.

Figure 5 - A Simple Flow

Figure 5 shows a simple flow I created in Node-RED consisting of a Bean temp node which connects

to the Light Blue Bean and takes a temperature reading when the “inject” node is triggered. The debug

node prints the temperature reading out to a debug console.

However, flows to send the temperature to ShareAspace, get data from ShareAspace, and edit data

on ShareAspace were also required. Communication with ShareAspace is mediated using HTTP

requests.

After doing some research I could not find any suitable Node-RED libraries for communication with

ShareAspace using HTTP. Therefore, I decided to write my own ShareAspace communication library.

Consisting of an “authenticator” node, a “create” node, a “read” node and an “update” node. How

this works is explained in detail in the implementation chapter.

2.2.4 System limitations
There were a few limitations of this placement system. For starters, there was no ability to perform

analytics on any of the sensor data collect. Another limitation is that this system had not been setup

with a real-world data model, nor had the system been deployed in a real-world environment. This is

the reason why I decided to build on this placement system to make a real-world system.

2.3 Literature review
As was noted in Section 2.1, ShareAspace is designed to complement PDM (Product Data

Management), PLM (Product Lifecycle Management), and ERP (Enterprise Resource Planning)

systems.

PDM and PLM systems track a large range of data about a product. This can include technical

specifications, design specifications, drawings, deployments, obsolescence, and disposal information.

PDM and PLM systems are very useful for companies because they make it very easy to reuse product

designs or track any changes to a product throughout its lifecycle. As the Siemens website puts it: this

improves “productivity and reduce cycle time” and helps to “Reduce development errors and costs”

(Siemens, n.d.) and there are many other benefits to using a PDM system. Some examples of PDM and

PLM software are “Windchill” by ptc (ptc, n.d.), “ENOVIA” by Dassault Système (DASSAULT SYSTÈMES,

n.d.) and “Teamcenter” by Siemens (Siemens, n.d.).

11

ERP systems collect and store all kinds of business data from different business activities such as

financial data, business intelligence data or project management data. The system keeps all this data

together making it easier to manage. ERP systems provide many advantages including “easier

collaboration, faster decision making, and improved overall productivity for the whole team”

(Microsoft, n.d.).

ShareAspace itself would only be a partial substitute for a fully-fledged PDM, ERP or PLM system. Its

focus is on allowing different PDM, ERP and PLM systems to talk to one another. As Eurostep explain

“ShareAspace is a hub that extends rather than replaces existing systems such as PDM, PLM, ERP or

MRO.” (Eurostep, n.d.).

Since the beginning of internet computing, people have built many different IoT systems for collecting

sensor data. Some of these even involve the same hardware (Raspberry Pi and Light Blue Bean) and

software (Node-Red) that I used. Systems developed by amateur enthusiasts include the use of Light

Blue Bean and Node-RED for sending an email if the temperature drops too low

(embeddedcomputing, n.d.). or the use of Raspberry Pi, Node-Red and Light Blue Bean to detect water

and flooding in a house (KarelK, n.d.). The way these systems initially collect data from the sensor is

very similar to the way this is done in my system; but this is where the similarities end.

The main difference with my system is that it combines the IoT sensor data collection (similar to the

two systems mentioned) with a product-data sharing system (in this case ShareAspace). At the time

of writing this I did not find evidence of many systems involving PDM, PLM and IoT, however there

was some literature on this topic which suggests ways in which it might be useful to use IoT with PDM

and PLM.

A proposed implementation of such a system

is discussed in (Thoben & Lewandowski,

2016). A diagram of the system can be seen in

the Figure 6. Here data is collected from

different inputs but “mainly raw data from the

turbine itself is collected”. Next the data is

processed to “gain information for the design

department and the life-cycle management”

(PLM). This proposed system shows how IoT

could be used in the context of product data

sharing as sensor data (from the turbine) is

used to add information to a product (a wind

turbine) and then stakeholders can check this sensor information attached to a product.

The blog “Beyond PLM” (Shilovitsky, 2014) talks about three things PLM could do with IoT. The first

point the blog makes is that IoT could “improve MRO solutions” (MRO - Maintenance, Repair, and

Operations) because “Sensors will provide a data foundation to connect and communicate with

products. It will help to optimize future service schedules and lower maintenance cost”. The second

point the blog makes is that IoT could “improve requirement management function” because “It will

be beneficial to know that some product functions are not in use and inject this information in future

requirement analysis and management tools”. The final point the blog makes is that IoT could allow

“product performance monitoring” the blog suggests that “if you can get real performance data from

an engine and other parts of the car, airplane, computer, toothbrush” this would help “to deal with

growing sets of regulation and other environmental requirements”. To summarize, this blog suggests

that IoT could have many uses in product management systems.

Figure 6 - Wind Turbine Example
(source - (Thoben & Lewandowski, 2016))

12

The literature review helped me think of features for and the technical architecture of my system. It

has done by this by giving me an insight into similar systems which led me to achieving one of my

objectives - finding out about related systems.

13

3 Design

3.1 The real world-system design
The real-world system I built was an extended version of the placement system but deployed in a real-

world environment. The main difference was that the extended system had data analytics and events

triggered by certain temperature thresholds.

In the original design for the system, it was assumed that Microsoft Azure would speak to ShareAspace

directly. However, after some testing (discussed in the Testing & Evaluation – Technical test 11) which

suggested ShareAspace might have trouble coping with millions of sensor readings, I decided that it

made sense to send every single temperature readings straight to Azure from the Pi and only send

temperature readings to ShareAspace if there were any changes in temperature. Doing this would

significantly reduce the number of readings stored by ShareAspace while still retaining the key

information about changes in temperature. This way, if a worrying or interesting temperature change

were detected, users could check Azure for a full history of temperature readings and generate reports

of temperature history using another Microsoft cloud service like PowerBI.

Figure 7 below provides an architectural diagram of the system:

Figure 7 - Architectural Diagram

This real-world system consists of two Light Blue Bean sensors situated in two different places in the

office which are constantly monitoring the ambient temperature of the room. These sensors are

powered by 3V CR2032 batteries so do not need to be powered from the mains. These two sensors

are connected over Bluetooth to two Raspberry Pi 3 boards, one sensor per Pi (although it would be

possible to have many sensors per Pi). The Raspberry Pi 3s are connected to the internet via a router

in the office so they both have access to both the internet and local network. This means that they are

able to communicate with an internal or external server as well as with cloud services such as

Microsoft Azure. The Raspberry Pi boards are powered from the mains; however, they could also be

14

powered by batteries. In the case of this system, a local ShareAspace server is running ShareAspace

Nova (the latest version of ShareAspace). This server is also connected to the internet so ShareAspace

can send emails, alerts, SMS, etc. The ShareAspace server is a laptop with a dual core processor, solid

state storage, and 8GB of RAM running Windows 10.

3.2 Deployment plan
Figure 8 illustrates the deployment plan in the

Eurostep UK office. The floorplan of the office shows

two yellow devices. These devices represent the

Light Blue Bean sensors which are placed in two

different rooms in the office: one in the main office

area and one in the kitchen. These sensors are

connected by blue arrows (representing Bluetooth

connections) to two red raspberry logos

representing the Raspberry Pi boards. The Raspberry

Pi logos are connected via black arrows to the

router, and the router is connected to the symbol

representing the ShareAspace server.

3.3 Data models
A data model is a conceptual model of how data items relate to each other. The Systems Modelling

Language (SysML) diagram below shows a zone breakdown (ZoneBreakdownStructure) and the

relationships between the zone elements (ZoneElements) and the sensors (RealizedParts) and

between the sensors and the properties measured and recorded by those sensors.

The blocks used to construct this data model come from the Product Life Cycle Support (PLCS) standard

(ISO 10303-239) on which the ShareAspace product is based. The PLCS/ISO 10303-239 standard is an

internationally accepted information model that allows for the consolidation, exchange, and sharing

of complex data related to product design, operation, support, and disposal (plcs, 2013).

As my system was meant to represent a real-world scenario I wanted to create a data model of the

office - just as many products such as ships, plans or cars are represented in PLCS Data Exchange

Specifications (DEXs). This data model was then used to specify an appropriate configuration for the

ShareAspace server.

Strictly speaking, my model ought to be split up into three different models because the full range of

cardinalities cannot be properly represented in a single model. But I put everything in one diagram for

simplicity.

The model should show that:

• A zone can have many child-zones.

• One zone can have many sensors.

• One sensor can have many readings.

Figure 8 - Deployment Plan

15

Figure 9 below is a SysML parametric diagram. This diagram was made using modelling software called

“MagicDraw” (nomagic, n.d.).

Figure 9 - Parametric Diagram

This model shows that you can create a breakdown hierarchy of zoneElements (eg Office complexes,

rooms, areas of rooms etc) and that each ZoneElement may have several sensors (RealizedParts) in it

and that each sensor may measure many temperature values - at different times. As has been noted,

this served as a specification for a ShareAspace implementation.

16

In Figure 10 an instance diagram for the model is shown.

Figure 10 - Instance Diagram

This diagram shows a possible instantiation or population of the data model – though it only shows a

single measurement per sensor as it would get a bit crowded if many instances of temperature

readings were included.

It does however show that (for instance) the Eurostep Limited Offices break down (in my simple

example) into Kitchen, Meeting Room, Vestibule, Male & Female lavatories, the main area and the

CEO’s office. Each zone has one sensor apart from the main area that has two. Each sensor has a

MeasuredProperty assigned to it.

Although, in my real-world system, I only have two sensors, the diagrams show what a complete

system for the Eurostep Offices might include and what could be represented in a ShareAspace

implementation.

17

3.4 Alternative design
When planning the architecture of the system I

considered using a gateway Pi in between other Pi

boards and the router as shown in Figure 11. This

would have allowed all the sensor data to be

configured in one place rather than having to

configure every single Pi in the system. This would

have made it easier to upgrade the system when, for

example, the web address of the server changed. The

problem with this approach is that it would introduce

a single point of failure within the system and it would

also slightly increase the time for readings to travel

from a sensor to ShareAspace. There would also have

to be an extra Pi for each local network of sensors and

this would increase the cost of a large-scale system.

For this reason, this alternative design approach was

abandoned.

3.5 System requirements
The core requirements of the system were as follows:

• The ability to gather sensor data from multiple sensors.

• The ability to authenticate with ShareAspace

• The ability to send data to ShareAspace, receive data from ShareAspace and change the data

on ShareAspace.

• The ability to send data to a cloud service such as Microsoft Azure.

• The ability to trigger events such as sending an email or SMS if for example a temperature

threshold is reached.

• The ability to perform analytics on the sensor data collected.

Future potential requirements include:

• The ability for the system to be flexible so that it could be modified for different

implementations in the future with different kinds of sensor data.

Figure 11 - Alternative Design

18

4 Implementation

4.1 Setting up the Light Blue Bean
Setting up the Light Blue Bean sensors was straightforward. First a 3V CR2032

battery (As shown in Figure 12) was inserted into the sensor. Once inserted

the sensor was ready to connect to over Bluetooth.

After this, I downloaded The Light Blue Bean App on my android smartphone.

The app comes with a number of different example programs (called

sketches) that can be uploaded to the Bean over Bluetooth and they are a

good way to of testing the Bean to see if it is working correctly. The app also

enables users to rename different Beans which makes it easier to distinguish

between them. I named the two Beans I had “Ebean1” and “Ebean2”. Some

screenshots of the app can be seen in Figure 13 and Figure 14.

Figure 12 - Light Blue Bean
and Battery

Figure 14 - Renaming Figure 13 - Sketches

19

One sensor was placed in the main room and one in the kitchen. I decided to place the sensor in the

main room on the windowsill, near a radiator. The sensor in the kitchen was placed on a shelf. Figure

15 and Figure 16 show the two deployed sensors.

4.2 Setting up the Raspberry Pi
The Raspberry Pi boards can run a selection of operating systems (OS), I decided to run a distribution

of Linux called Raspbian (Raspbian, n.d.), mainly because I had used this OS before. There are,

however, other distributions of Linux for the Pi such as Ubuntu and there is even a version of Windows

10 for the Pi. Raspbian comes with Node-JS and Node-RED so they do not need to be separately

installed. The OS is installed to the Pi by writing an image file to a microSD which then plugs into the

Pi. The Pi can then be booted by plugging a micro USB cable

in to power-up the board. Once the OS boots, the Pi can be

connected to the network and internet either over WIFI or

via its Ethernet port.

After this, I decided it would be useful to have remote

access to the Pi boards over the network since doing this

would allow the Pi boards to run in “headless” mode so you

do not need a separate monitor, mouse and keyboard for

each Pi in the system. To do this I first changed the host

name of each Pi in settings as can be seen in Figure 17. I

then went about installing a program called XRDP (xrdp,

n.d.), XRDP allows access to the Pi using “windows remote

desktop connection”.

Figure 15 - Main Room Sensor Figure 16 - Kitchen Sensor

Figure 17 - Pi Settings

20

Once installed, the Pi can be accessed by entering the hostname of the Pi in “windows remote desktop

connection” (as shown in Figure 18) on any windows computer on the same local network as the Pi.

Doing this brings up a login prompt for the Pi being connected to as can been seen in Figure 19. After

the username and password have been entered, the Pi can be controlled as though a mouse, keyboard

and monitor were connected directly to it.

4.3 Setting up ShareAspace
To install ShareAspace on my laptop I had help from a colleague at work who had installed

ShareAspace many times before. ShareAspace does not have a proper installer yet so a lot of the

process needs to be done manually. There is a guide explaining how to install it in ShareAspace

documentation (Eurostep, n.d.).

After ShareAspace has been installed, it needs to be bootstrapped and hosted. Once this is done

ShareAspace can be accessed from any computer on the local network by typing the hostname of the

host computer followed by “/sasweb” in my case this was “max-hp/sasweb”. This brings up a login

page as can be seen in Figure 20.

After logging in as administrator the next step is to upload a configuration or “template” for

ShareAspace. This can be done by going to the “collectionAdmin” dropdown and selecting

Figure 18 - Remote Desktop Connection
Figure 19 - Login Prompt

Figure 20 - ShareAspace Login Page

21

“Administration”. Here the “templates” tab can be selected and from this tab one can upload a

“config” file. I chose to upload the config file which was created using the data model I made earlier

(discussed in the design chapter).

The configuration that was uploaded is then used to create a “space” in ShareAspace. A “space” is a

virtual area of collaboration where “soft-types” can be created. Soft-types are custom buisness objects

rather than business objects (like person, organization, part etc) which ShareAspace already “knows”

about. I created a space called “SensorData” and within that space I created soft-types corresponding

to the sensors and to the rooms.

First I created a zone soft-type to represent the whole Eurostep office as can be seen in Figure 21.

Within the Eurostep office soft-type, I created two child zone soft-types, the Kitchen and MainRoom,

so two rooms within the office. The MainRoom and Kitchen soft-types each had a sensor within them

as can be seen in Figure 22 and Figure 23.

Figure 21 - Zone Soft-Type

Figure 22 - Main Room Soft-Type Figure 23 - Kitchen Soft-Type

22

Two types of sensor soft-types were created, each representing a different way of storing the sensor

data in ShareAspace. The first and most simple sensor type was called “sensorpropertybased” this

type of sensor soft-type just holds one temperature reading - the most recent one - and is updated

every time a new temperature reading is taken. This soft-type can be seen in Figure 24.

The second type of sensor soft-type is called “sensorinstancebased”. This soft-type is different in
that it holds multiple sensorReading soft-type instances. Each time a reading from a sensor arrives a
new reading soft-type instance is created and attached to this sensor soft-type. The advantage of
this type of sensor soft-type is that it holds a log of readings attached to the sensor they came from.
This sensor soft-type can be seen in Figure 25.

In the deployed system, both approaches were tested. This concludes the description of the setup for

my real-world test system in which the office and two rooms with sensors in them were represented

in ShareAspace. The config that I used could however be used to create the entire office in

ShareAspace with a zone soft-type instance for every room and there could be many sensors in each

of these rooms.

4.4 The ShareAspace library
As was noted above, the ShareAspace library I created was used in each of the flows for

communication with ShareAspace. This entails sending HTTP requests from each Pi to the ShareAspace

REST API. The library consists of four nodes each of them is described below:

4.4.1 Authenticator node
The authenticator node is

used for getting an access

token from the

ShareAspace server. This

token is required for all

communication with

ShareAspace. This node has several parameters

including: the ClientID, the clientSecret, BaseURL,

username and password. When installing ShareAspace,

“trusted” clients can be added. This is where the

Figure 26 - Authenticator
Node

Figure 27 - Authenticator Parameters

Figure 24 - sensorpropertybased Soft-Type Figure 25 - sensorinstancebased Soft-Type

23

ClientID and clientSecret of a certain client are specified. In my case, for example, the ClientID was

“nodered”. The BaseURL was just the hostname of the ShareAspace server. For my laptop server, this

was “https://max-hp”. Users can also be added when setting up ShareAspace but I just used the

administrative username and password. When the node is triggered, it sends an HTTP request

containing everything to ShareAspace and, if everything is correct, ShareAspace returns the access

token and the node outputs the returned access token.

The simplified pseudocode behind the authenticator node is as follows:

var BaseURL = getBaseURL();

var authenticationURL = /AuthorizationServer/sasweb/oauth/token

var ClientID = getClientID();

var CLIENTSECRET = getCLIENTSECRET();

var username = getUserName();

var password = getPassword();

requestHeader = ClientID+":"+CLIENTSECRET;

requestHeader = requestHeader.toBase64();

HTTPRequest = {

 requestHeader

 username

 password

}

var response = HTTPRequest.post(BaseURL+authenticationURL);

node.output(response);

4.4.2 Create node
The create node is for creating new soft-types in a given space on

ShareAspace. It takes the serverBaseURL and a space URL as its parameters.

The serverBaseURL is the same as the BaseURL when using the

authenticator node; so, in my case this was again “https://max-hp”. The

space URL is the location of the space in which the soft-type is created. The

create node also takes a JSON as an input; this JSON is a representation of a soft-type the user wants

to create. Once the node is triggered, it sends an

HTTP request containing the JSON to

ShareAspace. The node then outputs the

response from ShareAspace. The request sent to

ShareAspace also contains the access token

retrieved by the authenticator node in its header

so that ShareAspace “knows” which client is

making the request.

Figure 29 - Create Parameters

Figure 28 - Create Node

24

The simplified pseudocode behind the create node is as follows:

var BaseURL = getBaseURL();

var spaceURL = getSpaceURL();

var softTypeJSON = getNodeInput();

requestHeader = getAccessToken();

HTTPRequest = {

 requestHeader

 softTypeJSON

}

var response = HTTPRequest.post(spaceURL);

node.output(response);

4.4.3 Read node
The read node is for retrieving existing soft-types from ShareAspace and

returning them to the Pi in JSON format. The only parameter the node

takes is again the BaseURL of the server. The location of the soft-type we

want to read is taken as an input to the node as a string. The location is

given in the form of a URL. An example might be as follows:

“/api/space/SensorData/softtype/sensorPropertyBased/defaultOut/17f11e594c4c94552d01020006

000000?_=1495207277135”

When the read node detects an input, it sends an HTTP GET request to the provided location URL. If

everything is correct, ShareAspace returns the requested soft-type as a JSON. The node then outputs

the received JSON.

The simplified pseudocode behind the read node is as follows:

var BaseURL = getBaseURL();

var softTypeLocation = getNodeInput();

requestHeader = getAccessToken();

HTTPRequest = {

 requestHeader

}

var response = HTTPRequest.get(softTypeLocation);

node.output(response);

4.4.4 Update node
 The “update” node is for editing existing soft-types in ShareAspace. This

node takes two

parameters, the

serverBaseURL and a

soft-type URL. The BaseURL is, again, the same as

in every other ShareAspace node and the soft-

type URL is the location of the specific soft-type

Figure 30 - Read Node

Figure 31 - Update Node

Figure 32 - Update Parameters

25

we wish to edit. The update node takes an edited JSON of the soft-type we want to edit as its input.

For example, the new version of the soft-type could have a new temperature reading stored in it. This

edited JSON is then sent to ShareAspace using an HTTP PUT request and, if all is correct, ShareAspace

replaces the old soft-type with the new edited one. The node then outputs the response from

ShareAspace.

The simplified pseudocode behind is the update node is as follows:

var BaseURL = getBaseURL();

var softTypeLocation = getSoftTypeLocation();

requestHeader = getAccessToken();

var editedSoftTypeJSON = getNodeInput();

HTTPRequest = {

 requestHeader

 editedSoftTypeJSON

}

var response = HTTPRequest.put(softTypeLocation);

node.output(response);

4.5 Setting up Azure and powerBI
Azure is Microsoft’s cloud computing service. Azure offers many different services, however I only

used two for this project. The first service I used was the “Azure IoT hub” and the second service used

was the “Stream Analytics Job” (described later). The IoT hub “Provides multiple device-to-cloud and

cloud-to-device communication options, including one-way messaging, file transfer, and request-reply

methods.” (Microsoft, 2017). This means the IoT hub can be used to receive messages from a

Raspberry Pi. Creating an IoT hub can be done from the Azure dashboard by going to new -> Internet

of things -> IoT hub. Once this was done, Azure needed to be told about the devices it would be

receiving messages from as the IoT hub only allows connections from known devices. To do this I used

a piece of software called the Azure IoT Hub DeviceExplorer (Barry, 2015). To connect the Device

Explorer to the IoT, a connection string is required. This connection string can be found under “Shared

access policies” in the IoT hub. The connection string can then be copied to the device manager to

connect it to the IoT hub as shown in Figure 33.

After this, the two Pi boards, can be added to the IoT hub as “trusted devices”. This is done by going

to the “management” tab on the device explorer and then clicking “create”. The screenshot in Figure

34 shows the two generated keys. These keys were used later when the Pi board in the main room,

referred to as “EurostepPi2”, was connected to the IoT hub.

Figure 33 - The Connection String

26

The next step was to create a PowerBI account. PowerBI (Microsoft, n.d.) is a Microsoft business

analytics service. It can be used to create reports containing interactive visualizations such as graphs.

This made it ideal for this project as it could be used to visualize temperature data over time on a

graph. PowerBI did not really need setting up, I just created an account and this gave me access to the

PowerBI portal where the data from IoT hub could be sent.

Finally, I needed to setup the second service. Microsoft offer a “Stream Analytics Job” (Microsoft, n.d.)

which transfers data from an input source to an output sink. In my case, I was basically able to use the

Stream Analytics Job as a pipeline to move data received by the IoT hub into PowerBI. To create a

Stream Analytics Job, you go to new -> Data + Analytics -> Stream Analytics Job. Once the Job is

created, an “input”, “output” and “query” need to be set up. For the input, I selected the IoT hub I

created earlier as this is where the messages from the Pi boards arrive. For the output, I selected my

PowerBI account as this is where I wanted the data to end up. Finally, the query needed to be written.

This was done in SQL. In my case the SQL was:

SELECT

 *

INTO

 [TemperatureBI]

FROM

 [INPUT]

This selects all data from the input (the IoT hub) and forwards it to the output (PowerBI). After this

step Azure was ready to receive data from the Pi boards.

Figure 34 - Device Explorer EurostepPi2 Keys

27

4.6 The Node-RED flows
The final step in setting up the system was to create the flows in Node-Red for sending the data to the

different sensor soft-types in ShareAspace and sending data to Azure.

4.6.1 ShareAspace sensorpropertybased flows
The flows for the sensorpropertybased soft-type consisted of flows for authenticating, flows for

retrieving the two-different sensor soft-types (kitchen and main room) and flows for updating the

sensor soft-types on ShareAspace. In the case of my system I had one sensor per Pi so the flows for

the kitchen soft-type were on the Pi board labelled as “EurostepPi1” and the flows for the main room

soft-type were on the Pi board referred to as “EurostepPi2”. Figure 35 shows the flows for EurostepPi1:

Figure 35 - sensorpropertybased Flows

The first flow (called “authenticator”) is responsible for retrieving the ShareAspace access token and

making it available to other flows that use the ShareAspace library. This is so that the Pi can

authenticate with ShareAspace. The second flow (referred to as “Get the kitchen sensor”) is

responsible for retrieving the kitchen sensor soft-type so that the latest temperature can be added to

it by the third flow. Finally, the third flow (labelled as “Update the value on the kitchen sensor”) is

responsible for sending the edited soft-type with the latest temperature to ShareAspace to replace

the old soft-type. The third flow is also responsible for sending the latest temperature to the Azure IoT

hub. The IoT hub node takes a connection string from the devices created earlier in Azure (covered in

Setting up Azure and powerBI). This is so that Azure “knows” which temperature reading is coming

from which Pi. This connection string can be found in the device manager used to create the devices

on Azure as seen in Figure 36. As this was for the kitchen sensor, EurostepPi1’s connection string was

28

used.

Figure 36 - Devices in Azure

The flows for the main room are identical to the ones for the kitchen apart from using the other sensor

“Ebean2” and the IoT hub node using the connection string for the other Pi (EurostepPi2). A detailed

walkthrough of the flows used can be found in chapter 5.

4.6.2 ShareAspace sensorinstancebased flow

Figure 37 - sensorinstancebased Flow

The sensorinstancebased kitchen flow checks for temperature changes. If a change is detected, a new

temperature reading soft-type is created. The temperature reading soft-type is then attached to the

sensorinstancebased kitchen sensor using the read node to get the sensorinstancebased kitchen

sensor and then the update node is used to send a new version of the sensorinstancebased kitchen

sensor containing the new reading. This flow can be seen in Figure 37. Again, the flow for the

sensorinstancebased main room sensor is identical apart from the fact that it gets its temperature

from “Ebean2”. A detailed walkthrough of this flow can also be found in chapter 5.

29

5 The system in operation

5.1 Authenication operation
After setting up everything in the Eurostep office, the Raspberry Pi boards and sensors were powered

on and the system was ready to be used. First, Node-Red needed to be opened on each Pi and the

frequency of the trigger nodes needed to be set. I set the authenticator flow to trigger every hour. The

reason for this is the access token expires an hour after it is first created so every hour a new token is

needed. After this I pressed the button on the trigger node to get the first token.

Figure 38 - Authentication Flow Sending

As shown in Figure 38, the authenticator node sends an HTTP POST request to ShareAspace’s

authentication server. The request header contains the ClientID and CLIENTSECRET while the request

body contains the username and password. If these details are correct ShareAspace responds with an

access token as shown in Figure 39.

Figure 39 - Authentication Flow Receiving

30

After the authenticator node receives the token from ShareAspace,

the authenticator sends it on to a “function” node. All the function

node does is make the token accesible to other flows using

ShareAspace library nodes. Finally, the debug node also prints the

response containing the token to the console as can be seen in

Figure 40. This whole process needed to be carried out on both Pi

boards.

5.2 sensorpropertybased and Azure operations
The next step was to get the sensorpropertybased kitchen sensor soft-type so that the next flow could

use it to update the temperature. This soft-type only needed to be retrieved once so the flow only

needed to be run once.

Figure 41 - Requesting Soft-Type

To run the flow, the button on the inject node is pressed. Doing this inputs the URL of the kitchen

sensorpropertybased kitchen sensor soft-type into the read node. The read node then sends an HTTP

GET request to the inputted URL, the request header also contains the token in order to authenticate

with ShareAspace.

Figure 40 - Response

31

Figure 42 - Receiving Soft-Type

ShareAspace then returns the requested kitchen soft-type as a JSON. This JSON gets forwarded to a

function node which makes the kitchen sensor JSON accessible to other flows. Again this process had

to be repeated for the other Pi board, which would be returning the main room soft-type.

The next step was to start the flow that takes temperature readings, updates the sensorpropertybased

kitchen sensor on ShareAspace and sends the reading to Azure. I decided to set the timestamp node

to trigger the Light Blue Bean node every second. This

means a temperature reading was taken every second.

Although this drained the sensor battery more quickly

it allowed me “fill up” ShareAspace more quickly to test

how many soft-types ShareAspace could cope with. In

other real-world senarios readings would probably be

taken less frquesntly depending on the companies

needs.

Figure 43 - Trigger Every Second

32

Figure 44, Figure 45 and Figure 46 all show the ShareAspace side of this flow.

Figure 44 - Requesting the Temperature

Here the Pi connects (over bluetooth) to the Light Blue Bean and asks for a temperature reading.

Figure 45 - Returning the Temperature

The Light Blue Bean then replies with a temperature and forwards it to the JSON node.

33

Figure 46 - Making the Update on ShareAspace

The JSON node (function node) first of all retrieves the sensorpropertybased kitchen sensor soft-type

which the previous flow retrieved from ShareAspace. The JSON node then changes the soft-type JSONs

temperature to whatever temperature was received from the Light Blue Bean node. This new soft-

type JSON is then sent on to the update node. The update node forms an HTTP PUT request with the

access token in the header and the JSON as the body of the request. This PUT request is then sent to

the URL of the sensorpropertybased kitchen sensor soft-type originally retrieved. This whole process

is triggered every second. I checked the soft-type in ShareAspace and found that it was successfully

updating the temperature, as can be seen in Figure 47.

Figure 47 - the Kitchen Sensor

This whole process was done again for the other Pi taking temperature readings from the main room

instead of the kitchen.

Every time a temperature is added to the sensorpropertybased kitchen sensor and sent to

ShareAspace, a JSON containing the temperature is also sent to the Azure IoT hub I created. This can

be seen in Figure 48, where “temp” is the temperature reading from the Light Blue Bean.

34

Figure 48 - Sending the Temperature to Azure

The messages (containing the temperature and time) sent to the IoT hub on Azure from the Pi boards

can be seen on the device explorer program. As can be seen in Figure 49 for EurostepPi1.

Figure 49 - Monitoring

35

The IoT hub which can be accessed from the Azure portal, also

shows how many messages have arrived (Figure 50). This was

how I checked the messages were definitely arriving.

The next step was to see if the messages were getting forwarded to powerBI from the IoT hub. To do

this I logged into my PowerBI account and went on to the “datasets” tab. There I found a dataset called

“TemperatureDataSet” made up of the messages received from the IoT hub. As shown in Figure 51.

Figure 51 - Datasets

This dataset is continuously updated as new temperature readings from the Pi board arrive. After

leaving the system running for a while I then used PowerBI to generate a “report” from the dataset.

This is done by clicking the create report button as shown in Figure 52.

Figure 52 - Create Button

Doing this brings up a view where parts of the dataset can be selected for “visualization”, as can be

seen in Figure 53.

Figure 50 - Counter

36

Figure 53 - Visualization

I wanted to create a graph showing how temperature varies over time. So, from here I selected

“Temp” and “Time” and the line graph visualization button. Doing this generated an interactive line

graph of temperature against time. This generated report graph can be seen in Figure 54.

Figure 54 - Temp vs Time Graph

5.3 Sensorinstancebased operations
Collecting the temperature from the Light Blue Bean for the Sensorinstancebased sensor soft-type is

the same process as for the sensorpropertybased sensor soft-type. I also set the flow to run every

second (the same as for sensorpropertybased). The first difference is that, before the request is

created, a function node checks if the temperature is the same as the last readings temperature or if

it has changed. If the temperature is the same, nothing else happens and the process stops there.

However, if the temperature has changed then a JSON representation of a reading soft-type is added

to an HTTP POST request, which is then sent to a space’s URL on ShareAspace. This flow can be seen

in Figure 55.

37

Figure 55 - Creating a Temperature Reading Soft-Type

Doing this, creates a new reading soft-type containing the temperature sent such a soft-type can be

seen in Figure 56.

Figure 56 - Reading Soft-Type

The next step is to attach this sensor reading soft-type to the Sensorinstancebased sensor soft-type

that was created in ShareAspace earlier. To do this a function node first stores the ID (which is received

from the create node) of the reading soft-type and then injects the location (URL) of the

38

Sensorinstancebased sensor soft-type into a read node. The read node then makes a get request using

that injected URL. This can be seen in Figure 57.

Figure 57 - Requesting the Sensor Soft-Type

ShareAspace then returns the Sensorinstancebased sensor soft-type, as seen in Figure 58.

Figure 58 - Receiving Sensor Soft-Type

After the Sensorinstancebased sensor soft-type is received by the Pi, the read node passes it onto a

function node. The function node then retrieves the ID of the reading soft-type and adds it to the

Sensorinstancebased sensor soft-type. This updated Sensorinstancebased sensor soft-type is then sent

back to replace the old version of itself. This is done using the update node as shown in Figure 59.

39

Figure 59 - Updating Sensor Soft-Type

After the system had been running for a while, I went to check the Sensorinstancebased sensor soft-

type to see if readings were being added to the soft-type when the temperature changed. After

opening the soft-type and checking the readings attached to it, I concluded that everything was

working properly. The Sensorinstancebased sensor soft-type with the reading soft-types attached to

it can be seen in Figure 60.

Figure 60 - sensorinstancebased Sensor Soft-Type

40

6 Testing & Evaluation
I decided to go about evaluating the system in three different ways. The first evaluation comprised

several technical tests to see whether the system actually worked. The second evaluation used a focus

group made up mainly of computer-science students. I thought they could give helpful feedback on

the idea of such a system and the technical architecture of the system. Finally, the third evaluation

used a focus group made up of employees at Eurostep. Again, I thought they could give helpful

feedback on the idea of such a system and whether they could envisage their customers using it.

6.1 Technical tests
Once the system was fully deployed in the office, I performed technical tests based on the system

requirements. This allowed me to find out whether the system had any technical problems and

whether it fulfilled those requirements.

Test Number The Test Area of the System being
Tested

1 Can both Pi boards connect and
retrieve a temperature from
the Light Blue Beans?

Pi boards and sensors

2 Can the Pi boards authenticate
with ShareAspace?

Pi boards and ShareAspace

3 Can both Pi boards create a
soft-type?

Pi boards and ShareAspace

4 Can both Pi boards retrieve a
soft-type?

Pi boards and ShareAspace

5 Can both Pi boards update a
soft-type?

Pi boards and ShareAspace

6 Can both Pi boards send sensor
readings to Azure?

Pi boards and Azure

7 Can ShareAspace trigger an
event?

ShareAspace

8 Can analytics be performed on
the sensor data collected?

Azure

9 Does ShareAspace accept
invalid requests?

ShareAspace

10 Does ShareAspace accept
invalid credentials?

ShareAspace

11 How much data does
ShareAspace cope with?

ShareAspace

12 Does the system continue
operating if a sensor runs out of
power?

The whole system

Below is the table of results for these tests. Green shows successful outcomes, red shows unsuccessful

outcomes, and yellow shows results that are not binary.

41

6.2 Technical test results
Test Number Result Solution (if needed)

1 Yes – Both Pi boards can use
the Node-Red node to get a
temperature from the Light
Blue Beans.

Test successful

2 Yes – Both Pi boards can use
the authenticator node to get
an access token from
ShareAspace.

Test successful

3 Yes – Both Pi boards can use
the create node to send a soft-
type JSON to ShareAspace to
create a soft-type in
ShareAspace.

Test successful

4 Yes – Both Pi boards can use
the read node to get a specified
soft-type from ShareAspace.

Test successful

5 Yes – Both Pi boards can use
the update node to update
soft-types on ShareAspace.
This was tested with both types
on sensor soft-type used in this
implementation.

Test successful

6 Yes - Both Pi boards can use the
Azure IoT hub node to send
messages containing sensor
readings. Messages from both
Pi boards could be seen arriving
at the IoT hub .

Test successful

7 No – It is not yet possible for
ShareAspace to trigger an
event (such as sending an
email) for a soft-type property.
However, I was told this would
be possible in a later release of
ShareAspace.

Wait for a later release of
ShareAspace which will include
this feature.

8 Yes – Azure can channel data to
PowerBI. Power BI can then
perform analytics on the data.

Test successful

9 No – I send invalid requests
using the create node, update
node and read node. When
sending an invalid JSON using
the create node or update
node or an invalid URL with the
read node, ShareAspace
responds with an error and the
nodes say unsuccessful.

Test successful

10 No – sending an invalid
ClientID, clientSecret,

Test successful

42

username or password leads to
ShareAspace responding with a
400 error.

11 After leaving the system
running for a few days I
managed to create over three
million sensor-reading soft-
types. This caused the
ShareAspace UI to time out.
However, using the get node
could still return new soft-
types suggesting ShareAspace
was still functional. When
testing the
Sensorinstancebased soft-type
sensor ShareAspace, I found
ShareAspace started to freeze
up after a few thousand soft-
types were attached to it.
Colleagues at Eurostep think
this was due to ShareAspace
struggling with indexing.

For this project my solution
was only sending readings to
ShareAspace when the
temperature changed meaning
that fewer readings would be
stored and indexed by
ShareAspace. However, a long-
term solution would need to be
found by Eurostep.

12 Yes - The flow running on the Pi
does however stop, as the Light
Blue Bean node reports a
disconnection error.

This does not break the system
as such but maybe an alert to
tell users of the system that a
sensor has run out of power
would be useful.

Technical testing generally yielded good results. The majority of tests were successful. The only

unsuccessful test was ShareAspace triggering an event and this will hopefully be fixed in a future

release. Tests did also reveal that ShareAspace struggled to cope with lots of soft-types being attached

to another soft-type and that the UI struggled with millions of soft-types. I believe, however, that

these two potential flaws will be fixed in later versions of ShareAspace. These tests were also

performed with ShareAspace running on a laptop, not a high-performance server and this could have

influenced the test results 11.

6.3 Student focus group
The student focus group consisted of four people. Three of those people were studying computer

science and one person was studying geography but had some knowledge of IoT. The group was first

shown a presentation about the system and a demo of the system in use.

Do you think Eurostep customers are likely be increasing users of IoT technology?

One participant said he thought it “could be very useful to have sensors” but that it depended on how

scalable the system I made was. He commented that a system like mine would need to be tested in “a

very high stress environment” and a much bigger environment. Another participant commented that

she thought she could see companies using IoT “because IoT as a concept is increasing generally”.

43

When in a product’s lifecycle sensor data collection would be most useful?

A participant answered that if the data were used to generate analytics, this would be useful at the

end of a product’s lifecycle, when the company is thinking “what should our next product be?”

Do you think they [Eurostep’s customers] would have a use for a ShareAspace that could cope with

IoT data?

One participant’s response to this was he thought IoT functionality may be “a bit outside the core

aspect of what people use it [ShareAspace] for” however he went on to say that he did not think “it

[IoT functionality] negatively affects it [ShareAspace]”. He explained that he thought that some

companies would use it but he was not sure how widely it would be used. Another participant joined

in by saying he thought it would be “beneficial to speak to actual companies” about the IoT

functionality. Another comment was that he was unsure because ShareAspace sounded “buggy” due

to it not being able to cope with very large numbers of soft-types. He went on to explain that if

ShareAspace was buggy with IoT data, customers would use another service.

What do you think of the sensor, Raspberry Pi and Node-Red setup?

A participant talked about how he thought it would be better to have the functionality of the Azure

side of things on ShareAspace because if companies “have to use two services, that’s not particularly

easy” and explained that to do this ShareAspace will need to cope with masses of data. He went on to

say that if ShareAspace did not have the same functionality as Azure, companies may just decide to

use Azure.

What are your opinions on the hardware side of things?

After some discussion, two participants agreed that a bespoke sensor, designed for working purely

with ShareAspace, might be a good option. They also thought having the sensors perform what the Pi

boards currently do would be good if that were possible. This followed from the fact that, the group

noted, the Pi would be a bit large to deploy in something like a car. Another participant said the current

hardware setup is good for a prototype system but not if it went into mass production.

What do you think of Node-Red?

A participant said that “a visual language” like Node-Red “is probably the way to go”.

Does anyone have any “last thoughts” on the system?

One participant said it was “a decent idea” and that “there is potential” but “needs further exploring”.

Another participant said the idea may work better “for non-live data” and he suggested that it may be

better to collect sensor data separately and then add it to ShareAspace to share later.

6.4 Eurostep focus group
The Eurostep focus group consisted of four people who worked with me on the project.

Do you think Eurostep customers are likely be increasing users of IoT technology?

One participant immediately said “yes” so I asked him to explain why he thought so. The participant

explained that he knew from experience that lots of Eurostep’s customers already use sensors and

sensor data and that he thought that customers “are going to use more and more sensors” because

it’s “going to be cheaper”. He then went on to talk about how there are environments which never

used to have wireless internet access that now do and that this opens the door to many IoT

44

technologies. Because of this, he expected “to have customer demand to see that kind of

requirement”.

How do you think Eurostep’s customers would benefit from a system like mine?

A participant gave the example of a ship with sensors on board gathering data and that at the moment

the company using the ship needed to wait for the ship to come into dock to collect all the sensor

data. He then went on to talk about how a system like mine sending live data would enable

maintenance companies to know in advance which parts of the ship need replacing and so on, before

it arrived at the dock. This would make maintenance of the ship much faster.

Why do you think it is better to have ShareAspace with IoT capabilities rather than a separate

system for dealing with IoT and sensor data?

Once of the participants responded by noting that “with ShareAspace you have got that crucial link

back to the design information”. He went on to explain how this is useful because it provides more

information than just the sensor data. Another participant joined in by giving the example of a model

of car and how it would be useful to a manufacturer to link all sensor data from all cars of a certain

model back to the design of that model of car, rather than just each individual car.

Could people use the sensor data for when they make new products?

A participant answered by saying that was the aim to give a feedback on “how you look after the

product or how you design the next product”. He then went on to say “it’s about tying more

information about the product [together]”.

What do you think of my hardware choices?

One participant suggested it would have been good to “use more sensors and different types of

sensors”. Another participant stated powering the Pi board may be a concern and that it may be better

to use a battery powered device. Another participant said “I think it was quite good that it was

operating with off the shelf components”, he mentioned his only concern was that the Light Blue Bean

“was not particularly accurate” as the Light Blue Bean only measures to one degree accuracy.

What do you think of Node-Red?

Once participant said he thought it was good how fast you get programs up and running.

Can you see customers using IoT with ShareAspace and when do you think this may happen?

A participant said that he knew from experience that companies use ShareAspace “as a data firewall”.

If ShareAspace were to “separate and hide the collection business” from the people who have access

to the sensor data, it could come “into play as a potential technology”.

6.5 Webinar
During the making of the system I gave a webinar to around thirty people in the Eurostep group. The

webinar was an overview of the whole project (a recording of it can be found in my working

documents). At the end of the webinar I asked if anyone had any questions or feedback. Generally,

people were very interested in the idea and someone said that the company needs to understand

more about IoT.

6.6 Findings
Overall I feel that the technical tests showed that the main technical objectives of the project were

met. As has been reported, the tests run were based on the technical requirements of the system. The

45

findings from the two focus groups should be considered when further developing the system and

when developing new releases of ShareAspace. Participants gave good examples of improvements for

the system - such as using a more accurate sensor or even designing a bespoke sensor. Participants

also made it clear it was important to fix bugs in ShareAspace.

46

7 Conclusions

7.1 Review of aims
Below are the four objectives that I set for this project. For each one I shall analyse whether and how

this objective has been met.

a) Finding out about related systems.

In my literature review I researched the topic to find out if anyone else had attempted something

similar to my project. I did find lots of information on how IoT could be useful in product data

management and sharing. However, while I did learn about software like ShareAspace, I did not find

any ShareAspace like systems using IoT. This led me to believe I was exploring quite a new area, and

indicates that this objective was met.

b) Building a real-life system.

To explore the subject further I decided it would be good to build a real-life system in order to see

how helpful IoT can be working with software like ShareAspace. I successfully built and tested the

system consisting of sensors feeding data into ShareAspace. Technical tests were fairly successful and

suggested that with a little more development ShareAspace would be IoT/live data ready and

compatible. Because of this I feel the objective was met.

c) Investigating how such a system could be applied to companies.

To investigate this I decided to hold two focus groups and a webinar on the system I built, hoping that

my system deployment at the Eurostep office would demonstrate how such a system could be used

by other companies in real-world scenarios. The focus groups both generally gave positive feedback

and came up with quite a few scenarios in which they system could be used by companies. One

example was of a company using ShareAspace and IoT to collect maintenance data about a ship so

that, when it arrived at dock, the ship would be much quicker to service. Another included a system

similar to mine deployed in cars to gather live data which could be useful when making a new model

of car. Both these examples and the success of the deployed Eurostep office system lead me to

conclude this objective was met.

d) Then, exploring how such a system could help these companies.

The focus groups again gave lots of insight into how a system like the one developed could be useful

to companies. As was noted under objective C, live data could help companies speed up servicing of

vehicles and help companies when developing new products. In my literature review, I also covered

how useful it would be to companies to have sensor data on to product management systems. Again,

this literature covered how such systems would help with maintenance but also how such systems

would help companies deal with regulation and environmental requirements. All this information

makes me feel this final object has also been met.

Overall achieving these objectives have helped me answer my research question which was:

Why and how is IoT and real-time data useful in the context of product data sharing and exchange?

7.2 Suggested revisions to design or implementation
Starting with the hardware used in my system, I think if I was to design the system again I would have

used a more accurate sensor. The Light Blue Bean is only accurate to one degree; I think it would be

better to have a sensor which is accurate to at least 0.1 degrees. This point was also mentioned in the

Eurostep focus group. Next, although the Raspberry Pi 3 was a great choice at the time, the new

47

Raspberry Pi Zero W (Upton, 2017) would now be better. This is because the new Raspberry Pi Zero

has Bluetooth and Wi-Fi inbuilt just like the Pi 3, however the Pi Zero W is much cheaper and smaller

than the Pi 3. I think Node-Red was a very good choice and this was also felt by participants in the

focus groups.

I feel that Azure and PowerBI were a great way of visualizing the data. It would however, be nicer if

PowerBI could access data stored on ShareAspace directly as this would cut out the need for Azure.

7.3 Future work
If I had had more time I would have liked to add some more features to the deployed system and I

would have liked to do some more testing. One feature I would have liked to see would be

ShareAspace responding to events and sending an email or an SMS when the temperature reached a

threshold to alert users. Unfortunately, as mentioned in my testing, this was not yet possible with the

current version of ShareAspace but should be possible in a future release. It would also be nice to see

a future soft-type in ShareAspace that can cope with lots of other soft-types being attached to it.

Testing wise it would have been interesting to speak to some of Eurostep’s customers to see what

they think of idea of a system like the one developed. It would then have also been exciting to test

such a system on a large scale on something like a ship or in a car.

7.4 Lessons learned
I feel I have certainly learnt a lot during this project. First of all, I had to learn the JavaScript

programming language which I had never used before. This knowledge then enabled me to program

a library for ShareAspace. I was particularly happy with achieving this as I found it a challenge. I also

learnt about PDM systems and data modelling, two things not covered in my degree. I also found it

particularly interesting working with a company on this project as it gave me a real overview of what

industry is like. Overall I personally feel as though this project was a success and I very much enjoyed

working on it.

48

References
Barry, D. (2015, September 23). How to use Device Explorer for IoT Hub devices. Retrieved May 15,

2017, from github: https://github.com/fsautomata/azure-iot-

sdks/blob/master/tools/DeviceExplorer/doc/how_to_use_device_explorer.md

Butcher, M. (2014, August 28). Enevo’s Waste Bins Sensors Attract $8M Funding From Earlybird And

Draper Associates. Retrieved May 11, 2017, from techcrunch:

https://techcrunch.com/2014/08/28/enevos-waste-bins-sensors-attract-8m-funding-from-

earlybird-and-draper-associates/

DASSAULT SYSTÈMES. (n.d.). enovia. Retrieved May 24, 2017, from DASSAULT SYSTÈMES:

https://www.3ds.com/products-services/enovia/

embeddedcomputing. (n.d.). IoT with LightBlue Bean and Node-RED. Retrieved May 24, 2017, from

embeddedcomputing.weebly: http://embeddedcomputing.weebly.com/iot-with-lightblue-

bean-and-node-red.html

Eurostep. (n.d.). documentation. Retrieved June 1, 2017, from ShareAspace:

https://mossec.eurostep.com/documentation/index.html

Eurostep. (n.d.). ShareAspace Concept. Retrieved May 20, 2017, from Eurostep:

http://www.eurostep.com/products/shareaspace/

KarelK. (n.d.). Bluetooth Water Detection System. Retrieved May 24, 2017, from instructables:

http://www.instructables.com/id/Bluetooth-Water-Detection-System/

Microsoft. (2017, May 2). Overview of the Azure IoT Hub service. Retrieved May 22, 2017, from

Microsoft: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-what-is-iot-hub

Microsoft. (n.d.). Azure Stream Analytics. Retrieved May 10, 2017, from Microsoft Azure:

https://azure.microsoft.com/en-gb/services/stream-analytics/

Microsoft. (n.d.). what is erp. Retrieved May 24, 2017, from Microsoft dynamics365:

https://www.microsoft.com/en-us/dynamics365/what-is-erp

Microsoft. (n.d.). What is Power BI? Retrieved May 24, 2017, from PowerBI:

https://powerbi.microsoft.com/en-us/what-is-power-bi/

Murach-Ward, M. (2017). SCC 419 Project Proposal. Lancaster.

NEST. (n.d.). Nest. Retrieved May 11, 2017, from meet-nest-thermostat:

https://nest.com/uk/thermostat/meet-nest-thermostat/

Node.js. (n.d.). About Node.js. Retrieved May 22, 2017, from Node: https://nodejs.org/en/about/

nodered. (n.d.). About. Retrieved February 2, 2017, from nodered: https://nodered.org/about/

nomagic. (n.d.). magicdraw. Retrieved May 27, 2017, from nomagic:

https://www.nomagic.com/products/magicdraw

plcs. (2013, May 03). Product Life Cycle Support. Retrieved May 26, 2017, from plcs:

http://www.plcs.org/

ptc. (n.d.). Windchill PDM. Retrieved May 24, 2017, from ptc: http://www.ptc.com/en/product-

lifecycle-management/windchill/pdm-essentials

49

Raspberry Pi. (n.d.). raspberrypi. Retrieved January 28, 2017, from raspberrypi:

https://www.raspberrypi.org/

Raspbian. (n.d.). About Raspbian. Retrieved May 22, 2017, from raspbian:

https://www.raspbian.org/RaspbianAbout

Shilovitsky, O. (2014, April 28). 3-things-plm-can-do-with-iot-tomorrow. Retrieved May 24, 2017,

from beyondplm: http://beyondplm.com/2014/04/28/3-things-plm-can-do-with-iot-

tomorrow/

Siemens. (n.d.). Explore Teamcenter and discover your solution. Retrieved May 22, 2017, from

plm.automation.siemens:

https://www.plm.automation.siemens.com/en_gb/products/teamcenter/

Siemens. (n.d.). PDM / Product Data Management. Retrieved May 24, 2017, from Siemens

automation: https://www.plm.automation.siemens.com/en_gb/plm/pdm.shtml

Thoben, K.-D., & Lewandowski, M. (2016). Information and Data Provision of Operational Data. In A.

Bouras, B. Eynard, S. Foufou, & K.-D. Thoben, Product Lifecycle Management in the Era of

Internet of Things (pp. 20-29). Springer.

Upton, E. (2017, February 28). NEW PRODUCT! RASPBERRY PI ZERO W JOINS THE FAMILY. Retrieved

22 May, 2017, from Raspberry Pi Blog: https://www.raspberrypi.org/blog/raspberry-pi-zero-

w-joins-family/

xrdp. (n.d.). xrdp: An open source remote desktop protocol(rdp) server. Retrieved May 15, 2017, from

xrdp: http://www.xrdp.org/

50

Acknowledgments
I would first like to thank Dr Ioannis Chatzigeorgiou, my tutor for his help and support throughout

the project, along with the Computer Science department. I also want say a massive thank you to

everyone at Eurostep, without them this project would not have been possible. I would also like to

thank my parents, friends and Hannah for proof-reading and support. Finally, I would like to extend

my gratitude to the participants in the testing stage.

